

Welcome to the Compound Attachment/Analysis Tools’ documentation!

Contents:

	Compound Attachment Tool 0.5.5
	Installation

	Input files

	CAT Documentation
	General Overview & Getting Started

	path

	input_cores & input_ligands

	Optional

	Bond Dissociation Energy

	Type Aliases

	The Database Class

 [image: _images/CAT.svg]
 [https://travis-ci.org/nlesc-nano/CAT][image: _images/96b745318a7f2aa50de6103ad78b85735fa1954f.svg]
 [https://cat.readthedocs.io/en/latest]

[image: _images/python-3.6-blue.svg]
 [https://www.python.org][image: _images/python-3.7-blue.svg]
 [https://www.python.org]
Compound Attachment Tool 0.5.5

CAT is a collection of tools designed for the construction of various chemical compounds.
Further information is provided in the documentation [https://cat.readthedocs.io/en/latest/].

Installation

	Download miniconda for python3: miniconda [http://conda.pydata.org/miniconda.html] (also you can install the complete anaconda [https://www.continuum.io/downloads] version).

	Install according to: installConda [https://docs.anaconda.com/anaconda/install/].

	Create a new virtual environment, for python 3.7, using the following commands:
	conda create --name CAT python

	The virtual environment can be enabled and disabled by, respectively, typing:
	Enable: conda activate CAT

	Disable: conda deactivate

Dependencies installation

Using the conda environment the following packages should be installed:

	rdkit [http://www.rdkit.org] : conda install -y --name CAT --channel conda-forge rdkit

Package installation

Finally, install CAT using pip:

	CAT: pip install git+https://github.com/nlesc-nano/CAT@master --upgrade

Now you are ready to use CAT.

Input files

Running CAT and can be done with the following command:
init_cat my_settings.yaml. The user merely has to provide a yaml [https://yaml.org/] file
with the job settings, settings which can be tweaked and altered to suit ones
purposes (see example1 [https://github.com/BvB93/CAT/blob/master/examples/input_settings.yaml]). Alternatively, CAT can be run like a regular
python script, bypassing the command-line interface
(i.e. python input.py, see example2 [https://github.com/BvB93/CAT/blob/master/examples/input.py]).

An extensive description of the various available settings is available in
the documentation [https://cat.readthedocs.io/en/latest/].

CAT Documentation

For a more detailed description of the CAT compound builder read the
documentation. The documentation is divided into three parts: The basics,
further details about the input cores & ligands and finally a more detailed
look into the customization of the various jobs.

	General Overview & Getting Started
	Default Settings

	Verbose default Settings

	Maximum verbose default Settings

	path
	Default Settings

	Arguments

	input_cores & input_ligands
	Default Settings

	Optional arguments

	Optional
	Index

	Default Settings

	Arguments
	Database

	Core

	Ligand

	QD

	Bond Dissociation Energy
	Default Settings

	Arguments

	Arguments - Job Customization

	Type Aliases
	Aliases

	The Database Class
	Index

	Class API
	Database

	DFCollection

	MetaManager

	OpenLig

	OpenQD

	OpenYaml

	Function API

General Overview & Getting Started

A basic recipe for running CAT:

1. Create two directories named ‘core’ and ‘ligand’. The ‘core’ directory
should contain the input cores & the ‘ligand’ should contain the input
ligands. The quantum dots will be exported to the ‘QD’ directory.

2. Customize the job settings to your liking, see
CAT/examples/input_settings.yaml [https://github.com/BvB93/CAT/blob/devel/examples/input_settings.yaml] for an example.
Note: everything under the optional section does not have to be
included in the input settings.
As is implied by the name, everything in optional is completely optional.

3. Run CAT with the following command:
init_cat input_settings.yaml

4. Congratulations, you just ran
CAT!

The default CAT settings, at various levels of verbosity, are provided
below.

Default Settings

path: None

input_cores:
 - Cd68Se55.xyz:
 guess_bonds: False

input_ligands:
 - OC(C)=O
 - OC(CC)=O

Verbose default Settings

path: None

input_cores:
 - Cd68Se55.xyz:
 guess_bonds: False

input_ligands:
 - OC(C)=O
 - OC(CC)=O

optional:
 database:
 dirname: database
 read: True
 write: True
 overwrite: False
 mol_format: (pdb, xyz)
 mongodb: False

 core:
 dirname: core
 dummy: Cl

 ligand:
 dirname: ligand
 optimize: True
 split: True
 functional_groups: null
 cosmo-rs: False

 qd:
 dirname: QD
 optimize: False
 activation_strain: False
 dissociate: False

Maximum verbose default Settings

path: None

input_cores:
 - Cd68Se55.xyz:
 guess_bonds: False

input_ligands:
 - OC(C)=O
 - OC(CC)=O

optional:
 database:
 dirname: database
 read: (core, ligand, qd)
 write: (core, ligand, qd)
 overwrite: False
 mol_format: (pdb, xyz)
 mongodb: False

 core:
 dirname: core
 dummy: Cl

 ligand:
 dirname: ligand
 optimize: True
 split: True
 functional_groups: null
 cosmo-rs: False

 qd:
 dirname: QD
 optimize: False
 activation_strain: False
 dissociate:
 core_atom: Cd
 lig_count: 2
 keep_files: True
 core_core_dist: 5.0
 lig_core_dist: 5.0
 topology: {}

 job1: False
 s1: False
 job2: False
 s2: False

path

Default Settings

path: null

Arguments

	
path

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str] or NoneType

	Default value – None

The path were all working directories are/will be stored.
To use the current working directory, use one of the following values:
None, ".", "" or "path_to_workdir".

Note

The yaml format uses null rather than None as in Python.

input_cores & input_ligands

Thia section related relates the importing and processing of cores and ligands.
Ligand & cores can be imported from a wide range of different files and files
types, which can roughly be divided into three categories:

	Files containing coordinates of a single molecule: .xyz, .pdb & .mol files.

	Python objects: plams.Molecule, rdkit.Chem.Mol & SMILES strings (str [https://docs.python.org/3/library/stdtypes.html#str]).

	Containers with one or multiple input molecules: directories & .txt files.

In the later case, the container can consist of multiple SMILES strings or
paths to .xyz, .pdb and/or .mol files. If necessary, containers are searched
recursively. Both absolute and relative paths are explored.

Default Settings

input_cores:
 - Cd68Se55.xyz:
 guess_bonds: False

input_ligands:
 - OC(C)=O
 - OC(CC)=O
 - OC(CCC)=O
 - OC(CCCC)=O

Optional arguments

	
.guess_bonds

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – False

Try to guess bonds and bond orders in a molecule based on the types atoms
and the relative of atoms. Is set to False by default, with the exception
of .xyz files.

	
.column

	

	Parameter:	
	Type - int [https://docs.python.org/3/library/functions.html#int]

	Default value – 0

The column containing the to be imported molecules.
Relevant when importing structures from .txt and .xlsx files with
multiple columns.
Relevant for .txt and .csv files.
Numbering starts from 0.

	
.row

	

	Parameter:	
	Type - int [https://docs.python.org/3/library/functions.html#int]

	Default value – 0

The first row in a column which contains a molecule.
Useful for when, for example, the very first row contains the title of
aforementioned row, in which case row = 1 would be a sensible choice.
Relevant for .txt and .csv files.
Numbering starts from 0.

	
.indices

	

	Parameter:	
	Type - int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] [int [https://docs.python.org/3/library/functions.html#int]]

	Default value – None

The behaviour of this argument depends on whether it is passed to a molecule
in input_cores or input_ligands:

	
input_cores

	Manually specify the atomic index of one ore more atom(s) in the core that
will be replaced with ligands. If left empty, all atoms of a user-specified
element (see optional.cores.dummy) will be replaced with
ligands.

	
input_ligands

	Manually specify the atomic index of the ligand atom that will be attached
to core (implying argument_dict: optional.ligand.split = False).
If two atomic indices are provided (e.g. (1, 2)), the bond between atoms 1 and
[2] will be broken and the remaining molecule containing atom 2 is attached to the core,
(implying argument_dict: split = True).
Serves as an alternative to the functional group based CAT.find_substructure() function,
which identifies the to be attached atom based on connectivity patterns
(i.e. functional groups).

Note

Atom numbering follows the PLAMS [1 [https://github.com/SCM-NV/PLAMS], 2 [https://www.scm.com/doc/plams/index.html]] convention of starting from 1 rather than 0.

Optional

There are a number of arguments which can be used to modify the
functionality and behaviour of the quantum dot builder. Herein an
overview is provided.

Note: Inclusion of this section in the input file is not required,
assuming one is content with the default settings.

Index

	Option
	Description

	optional.database.dirname
	The name of the directory where the database will be stored.

	optional.database.read
	Attempt to read results from the database before starting calculations.

	optional.database.write
	Export results to the database.

	optional.database.overwrite
	Allow previous results in the database to be overwritten.

	optional.database.mol_format
	The file format(s) for exporting moleculair structures.

	optional.database.mongodb
	Options related to the MongoDB format.

	optional.core.dirname
	The name of the directory where all cores will be stored.

	optional.core.dummy
	Atomic number of symbol of the core dummy atoms.

	optional.ligand.dirname
	The name of the directory where all ligands will be stored.

	optional.ligand.optimize
	Optimize the geometry of the to-be attached ligands.

	optional.ligand.functional_groups
	Manually specify SMILES strings representing functional groups.

	optional.ligand.split
	If the ligand should be attached in its entirety to the core or not.

	optional.ligand.cosmo-rs
	Perform a property calculation with COSMO-RS on the ligand.

	optional.qd.dirname
	The name of the directory where all quantum dots will be stored.

	optional.qd.optimize
	Optimize the quantum dot (i.e. core + all ligands) .

	optional.qd.activation_strain
	Perform an activation strain analyses.

	optional.qd.dissociate
	Calculate the ligand dissociation energy.

Default Settings

optional:
 database:
 dirname: database
 read: True
 write: True
 overwrite: False
 mol_format: (pdb, xyz)
 mongodb: False

 core:
 dirname: core
 dummy: Cl

 ligand:
 dirname: ligand
 optimize: True
 functional_groups: null
 split: True
 cosmo-rs: False

 qd:
 dirname: qd
 optimize: False
 activation_strain: False
 dissociate: False

Arguments

Database

	
optional.database

	All database-related settings.

Note

For optional.database settings to take effect the Data-CAT [https://github.com/nlesc-nano/data-CAT] package has to be installed.

Example:

optional:
 database:
 dirname: database
 read: True
 write: True
 overwrite: False
 mol_format: (pdb, xyz)
 mongodb: False

	
optional.database.dirname

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str]

	Default Value - "database"

The name of the directory where the database will be stored.

The database directory will be created (if it does not yet exist)
at the path specified in path.

	
optional.database.read

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] [str [https://docs.python.org/3/library/stdtypes.html#str]]

	Default value - ("core", "ligand", "qd")

Attempt to read results from the database before starting calculations.

Before optimizing a structure, check if a geometry is available from
previous calculations. If a match is found, use that structure and
avoid a geometry reoptimizations. If one wants more control then the
boolean can be substituted for a list of strings (i.e. "core",
"ligand" and/or "qd"), meaning that structures will be read only for a
specific subset.

Example

Example #1:

optional:
 database:
 read: (core, ligand, qd) # This is equivalent to read: True

Example #2:

optional:
 database:
 read: ligand

	
optional.database.write

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] [str [https://docs.python.org/3/library/stdtypes.html#str]]

	Default value - ("core", "ligand", "qd")

Export results to the database.

Previous results will not be overwritten unless
optional.database.overwrite = True. If one wants more control then
the boolean can be substituted for a list of strings (i.e. "core",
"ligand" and/or "qd"), meaning that structures written for for a specific
subset.

See optional.database.read for a similar relevant example.

	
optional.database.overwrite

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] [str [https://docs.python.org/3/library/stdtypes.html#str]]

	Default value - False

Allow previous results in the database to be overwritten.

Only apllicable if optional.database.write = True.
If one wants more control then the boolean can be substituted for
a list of strings (i.e. "core", "ligand" and/or "qd"), meaning
that structures written for for a specific subset.

See optional.database.read for a similar relevant example.

	
optional.database.mol_format

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] [str [https://docs.python.org/3/library/stdtypes.html#str]]

	Default value - ("pdb", "xyz")

The file format(s) for exporting moleculair structures.

By default all structures are stored in the .hdf5 format as
(partially) de-serialized .pdb files. Additional formats can be
requisted with this keyword.
Accepted values: "pdb", "xyz", "mol" and/or "mol2".

	
optional.database.mongodb

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Default Value – False

Options related to the MongoDB format.

See also

More extensive options for this argument are provided in The Database Class:.

Core

	
optional.core

	All settings related to the core.

Example:

optional:
 core:
 dirname: core
 dummy: Cl

	
optional.core.dirname

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str]

	Default value – "core"

The name of the directory where all cores will be stored.

The core directory will be created (if it does not yet exist)
at the path specified in path.

	
optional.core.dummy

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]

	Default value – 17

Atomic number of symbol of the core dummy atoms.

The atomic number or atomic symbol of the atoms in the core which are to be
replaced with ligands. Alternatively, dummy atoms can be manually specified
with the core_indices variable.

Ligand

	
optional.ligand

	All settings related to the ligands.

Example:

optional:
 ligand:
 dirname: ligand
 optimize: True
 functional_groups: null
 split: True
 cosmo-rs: False

	
optional.ligand.dirname

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str]

	Default value – "ligand"

The name of the directory where all ligands will be stored.

The ligand directory will be created (if it does not yet exist)
at the path specified in path.

	
optional.ligand.optimize

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – True

Optimize the geometry of the to-be attached ligands.

The ligand is split into one or multiple (more or less) linear fragments,
which are subsequently optimized (RDKit UFF [1 [http://www.rdkit.org], 2 [https://github.com/rdkit/rdkit], 3 [https://doi.org/10.1021/ja00051a040]]) and reassembled
while checking for the optimal dihedral angle. The ligand fragments are
biased towards more linear conformations to minimize inter-ligand
repulsion once the ligands are attached to the core.

	
optional.ligand.functional_groups

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] [str [https://docs.python.org/3/library/stdtypes.html#str]]

	Default value – None

Manually specify SMILES strings representing functional groups.

For example, with optional.ligand.functional_groups = ("O[H]", "[N+].[Cl-]") all
ligands will be searched for the presence of hydroxides and ammonium chlorides.

The first atom in each SMILES string (i.e. the “anchor”) will be used for attaching the ligand
to the core, while the last atom (assuming optional.ligand.split = True) will be
dissociated from the ligand and disgarded.

If not specified, the default functional groups of CAT are used.

Note

This argument has no value be default and will thus default to SMILES strings of the default
functional groups supported by CAT.

Note

The yaml format uses null rather than None as in Python.

	
optional.ligand.split

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – True

If False: The ligand is to be attached to the core in its entirety .

	Before
	After

	\({NR_4}^+\)
	\({NR_4}^+\)

	\(O_2 CR\)
	\(O_2 CR\)

	\(HO_2 CR\)
	\(HO_2 CR\)

	\(H_3 CO_2 CR\)
	\(H_3 CO_2 CR\)

True: A proton, counterion or functional group is to be removed from
the ligand before attachment to the core.

	Before
	After

	\(Cl^- + {NR_4}^+\)
	\({NR_4}^+\)

	\(HO_2 CR\)
	\({O_2 CR}^-\)

	\(Na^+ + {O_2 CR}^-\)
	\({O_2 CR}^-\)

	\(HO_2 CR\)
	\({O_2 CR}^-\)

	\(H_3 CO_2 CR\)
	\({O_2 CR}^-\)

	
optional.ligand.cosmo-rs

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Default value – False

Perform a property calculation with COSMO-RS [4 [https://www.scm.com/doc/COSMO-RS/index.html], 5 [https://doi.org/10.1021/j100007a062], 6 [https://doi.org/10.1021/jp980017s], 7 [https://doi.org/10.1139/V09-008]] on the ligand.

The COSMO surfaces are by default constructed using ADF MOPAC [8 [https://www.scm.com/doc/MOPAC/Introduction.html], 9 [http://openmopac.net], 10 [https://doi.org/10.1007/s00894-012-1667-x]].

The solvation energy of the ligand and its activity coefficient are
calculated in the following solvents: acetone, acetonitrile,
dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), ethyl acetate,
ethanol, n-hexane, toluene and water.

QD

	
optional.qd

	All settings related to the quantum dots.

Example:

optional:
 qd:
 dirname: QD
 optimize: False
 activation_strain: False
 dissociate: False

	
optional.qd.dirname

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str]

	Default value – "qd"

The name of the directory where all quantum dots will be stored.

The quantum dot directory will be created (if it does not yet exist)
at the path specified in path.

	
optional.qd.optimize

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Default value – False

Optimize the quantum dot (i.e. core + all ligands) .

By default the calculation is performed with ADF UFF [3 [https://doi.org/10.1021/ja00051a040], 11 [https://www.scm.com/doc/UFF/index.html]].
The geometry of the core and ligand atoms directly attached to the core
are frozen during this optimization.

	
optional.qd.activation_strain

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – False

Perform an activation strain analyses [12 [https://doi.org/10.1002/9780470125922.ch1], 13 [https://doi.org/10.1002/wcms.1221], 14 [https://doi.org/10.1021/acs.jpcc.5b02987]].

The activation strain analyses (kcal mol-1) is performed
on the ligands attached to the quantum dot surface with RDKit UFF [1 [http://www.rdkit.org], 2 [https://github.com/rdkit/rdkit], 3 [https://doi.org/10.1021/ja00051a040]].

The core is removed during this process; the analyses is thus exclusively
focused on ligand deformation and inter-ligand interaction.
Yields three terms:

1. dEstrain : The energy required to deform the ligand
from their equilibrium geometry to the geometry they adopt on the quantum
dot surface. This term is, by definition, destabilizing. Also known as the
preperation energy (dEprep).

2. dEint : The mutual interaction between all deformed
ligands. This term is characterized by the non-covalent interaction between
ligands (UFF Lennard-Jones potential) and, depending on the inter-ligand
distances, can be either stabilizing or destabilizing.

3. dE : The sum of dEstrain and dEint.
Accounts for both the destabilizing ligand deformation and (de-)stabilizing
interaction between all ligands in the absence of the core.

	
optional.qd.dissociate

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Default value – False

Calculate the ligand dissociation energy.

Calculate the ligand dissociation energy (BDE) of ligands attached to the
surface of the core. See Bond Dissociation Energy for more details.
The calculation consists of five distinct steps:

1. Dissociate all combinations of \({n}\) ligands (\(Y\)) and an atom from the core (\(X\))
within a radius r from aforementioned core atom.
The dissociated compound has the general structure of \(XY_{n}\).

2. Optimize the geometry of \(XY_{n}\) at the first level of theory
(\(1\)). Default: ADF MOPAC [1 [http://www.rdkit.org], 2 [https://github.com/rdkit/rdkit], 3 [https://doi.org/10.1021/ja00051a040]].

3. Calculate the “electronic” contribution to the BDE (\(\Delta E\))
at the first level of theory (\(1\)): ADF MOPAC [1 [http://www.rdkit.org], 2 [https://github.com/rdkit/rdkit], 3 [https://doi.org/10.1021/ja00051a040]].
This step consists of single point calculations of the complete
quantum dot, \(XY_{n}\) and all \(XY_{n}\)-dissociated quantum dots.

4. Calculate the thermalchemical contribution to the BDE (\(\Delta \Delta G\)) at the
second level of theory (\(2\)). Default: ADF UFF [4 [https://www.scm.com/doc/COSMO-RS/index.html], 5 [https://doi.org/10.1021/j100007a062]]. This step
consists of geometry optimizations and frequency analyses of the same
compounds used for step 3.

	\(\Delta G_{tot} = \Delta E_{1} + \Delta \Delta G_{2} = \Delta E_{1} + (\Delta G_{2} - \Delta E_{2})\).

See also

More extensive options for this argument are provided in Bond Dissociation Energy:.

Bond Dissociation Energy

Calculate the bond dissociation energy (BDE) of ligands attached to the
surface of the core. The calculation consists of five distinct steps:

1. Dissociate all combinations of \({n}\) ligands (\(Y\), see optional.qd.dissociate.lig_count) a
nd an atom from the core (\(X\), see optional.qd.dissociate.core_atom)
within a radius \(r\) from aforementioned
core atom (see optional.qd.dissociate.lig_core_dist and
optional.qd.dissociate.core_core_dist).
The dissociated compound has the general structure of \(XY_{n}\).

2. Optimize the geometry of \(XY_{n}\) at the first level of theory
(\(1\)). Default: ADF MOPAC [1 [https://www.scm.com/doc/MOPAC/Introduction.html], 2 [http://openmopac.net], 3 [https://doi.org/10.1007/s00894-012-1667-x]].

3. Calculate the “electronic” contribution to the BDE (\(\Delta E\))
at the first level of theory (\(1\)): ADF MOPAC [1 [https://www.scm.com/doc/MOPAC/Introduction.html], 2 [http://openmopac.net], 3 [https://doi.org/10.1007/s00894-012-1667-x]].
This step consists of single point calculations of the complete
quantum dot, \(XY_{n}\) and all \(XY_{n}\)-dissociated quantum dots.

4. Calculate the thermalchemical contribution to the BDE (\(\Delta \Delta G\)) at the
second level of theory (\(2\)). Default: ADF UFF [4 [https://doi.org/10.1021/ja00051a040], 5 [https://www.scm.com/doc/UFF/index.html]]. This step
consists of geometry optimizations and frequency analyses of the same
compounds used for step 3.

	\(\Delta G_{tot} = \Delta E_{1} + \Delta \Delta G_{2} = \Delta E_{1} + (\Delta G_{2} - \Delta E_{2})\).

Default Settings

optional:
 qd:
 dissociate:
 core_atom: Cd
 lig_count: 2
 keep_files: True
 core_core_dist: 5.0 # Ångström
 lig_core_dist: 5.0 # Ångström
 core_index: False
 topology: {}

 job1: AMSJob
 s1: True
 job2: AMSJob
 s2: True

Arguments

	
optional.qd.dissociate

	optional:
 qd:
 dissociate:
 core_atom: Cd
 lig_count: 2
 keep_files: True
 core_core_dist: 5.0 # Ångström
 lig_core_dist: 5.0 # Ångström
 core_index: False
 topology:
 7: vertice
 8: edge
 10: face

	
optional.qd.dissociate.core_atom

	

	Parameter:	
	Type - str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]

	Default value – None

The atomic number or atomic symbol of the core atoms (\(X\)) which are to be
dissociated. The core atoms are dissociated in combination with \(n\) ligands
(\(Y\), see optional.qd.dissociate.lig_count).
Yields a compound with the general formula \(XY_{n}\).

If one is interested in dissociating ligands in combination with
a molecular species (e.g. \(X = {NR_4}^+\)) the atomic number (or symbol)
can be substituted for a SMILES string represting a poly-atomic ion
(e.g. tetramethyl ammonium: C[N+](C)(C)C).

If a SMILES string is provided it must satisfy the following 2 requirements:

	The SMILES string must contain a single charged atom; unpredictable behaviour can occur otherwise.

	The provided structure (including its bonds) must be present in the core.

Warning

This argument has no value be default and thus must be provided by the user.

Note

The yaml format uses null rather than None as in Python.

	
optional.qd.dissociate.lig_count

	

	Parameter:	
	Type - int [https://docs.python.org/3/library/functions.html#int]

	Default value – None

The number of ligands, \(n\), which is to be dissociated in combination
with a single core atom (\(X\), see optional.qd.dissociate.core_atom).
Yields a compound with the general formula \(XY_{n}\).

Warning

This argument has no value be default and thus must be provided by the user.

Note

The yaml format uses null rather than None as in Python.

	
optional.qd.dissociate.keep_files

	

	Parameter:	
	Type - bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – True

Whether to keep or delete all BDE files after all calculations are finished.

	
optional.qd.dissociate.core_core_dist

	

	Parameter:	
	Type - float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	Default value – 0.0

The maximum to be considered distance (Ångström) between atoms in
optional.qd.dissociate.core_atom.
Used for determining the topology of the core atom
(see optional.qd.dissociate.topology) and whether it is exposed to the
surface of the core or not. It is recommended to use a radius which
encapsulates a single (complete) shell of neighbours.

If not specified (or equal to 0.0) CAT will attempt to guess a suitable value
based on the cores’ radial distribution function.

	
optional.qd.dissociate.lig_core_dist

	

	Parameter:	
	Type - float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	Default value – 5.0

Dissociate all possible combinations of \(n\) ligands and a single core atom
(see optional.qd.dissociate.core_atom) within a given radius (Ångström)
from aforementioned core atom. The number of ligands dissociated in
combination with a single core atom is controlled by
optional.qd.dissociate.lig_count.

[image: _images/BDE_XY2.png]

	
optional.qd.dissociate.core_index

	

	Parameter:	
	Type - int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] [int [https://docs.python.org/3/library/functions.html#int]]

	Default value – None

Alternative to optional.qd.dissociate.lig_core_dist and optional.qd.dissociate.core_atom.
Manually specify the indices of all to-be dissociated atoms in the core.
Core atoms will be dissociated in combination with the \(n\) closest ligands.

Note

Atom numbering follows the PLAMS [1 [https://www.scm.com/doc/MOPAC/Introduction.html], 2 [http://openmopac.net]] convention of starting from 1 rather than 0.

Note

The yaml format uses null rather than None as in Python.

	
optional.qd.dissociate.topology

	

	Parameter:	
	Type - dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Default value – {}

A dictionary which translates the number neighbouring core atoms
(see optional.qd.dissociate.core_atom and optional.qd.dissociate.core_core_dist)
into a topology. Keys represent the number of neighbours, values represent
the matching topology.

Example

Given a optional.qd.dissociate.core_core_dist of 5.0 Ångström,
the following options can be interpreted as following:

optional:
 qd:
 dissociate:
 7: vertice
 8: edge
 10: face

Core atoms with 7 other neighbouring core atoms (within a radius of 5.0 Ångström)
are marked as "vertice", the ones with 8 neighbours are marked as "edge"
and the ones with 10 neighbours as "face".

Arguments - Job Customization

	
optional.qd.dissociate

	optional:
 qd:
 dissociate:
 job1: AMSJob
 s1: True
 job2: AMSJob
 s2: True

	
optional.qd.dissociate.job1

	

	Parameter:	
	Type - type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str] or bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – plams.AMSJob

A type [https://docs.python.org/3/library/functions.html#type] object of a plams.Job subclass, used for calculating the
“electronic” component (\(\Delta E_{1}\)) of the bond dissociation energy.
Involves single point calculations.

Alternatively, an alias can be provided for a specific
job type (see Type Aliases).

Setting it to True will default to plams.AMSJob,
while False is equivalent to optional.qd.dissociate = False.

	
optional.qd.dissociate.s1

	

	Parameter:	
	Type - dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str] or bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – See below

s1:
 input:
 mopac:
 model: PM7
 ams:
 system:
 charge: 0

The job settings used for calculating the “electronic” component
(\(\Delta E_{1}\)) of the bond dissociation energy.

Alternatively, a path can be provided to .json or .yaml file
containing the job settings.

Setting it to True will default to the ["MOPAC"] block in
CAT/data/templates/qd.yaml [https://github.com/BvB93/CAT/blob/master/CAT/data/templates/qd.yaml], while False is equivalent to
optional.qd.dissociate = False.

	
optional.qd.dissociate.job2

	

	Parameter:	
	Type - type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str] or bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – plams.AMSJob

A type [https://docs.python.org/3/library/functions.html#type] object of a plams.Job subclass, used for calculating the
thermal component (\(\Delta \Delta G_{2}\)) of the bond dissociation energy.
Involves a geometry reoptimizations and frequency analyses.

Alternatively, an alias can be provided for a specific
job type (see Type Aliases).

Setting it to True will default to plams.AMSJob,
while False will skip the thermochemical analysis completely.

	
optional.qd.dissociate.s1

	

	Parameter:	
	Type - dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str] or bool [https://docs.python.org/3/library/functions.html#bool]

	Default value – See below

s2:
 input:
 uff:
 library: uff
 ams:
 system:
 charge: 0
 bondorders:
 _1: null

The job settings used for calculating the thermal component (\(\Delta \Delta G_{2}\))
of the bond dissociation energy.

Alternatively, a path can be provided to .json or .yaml file
containing the job settings.

Setting it to True will default to the the MOPAC block in
CAT/data/templates/qd.yaml [https://github.com/BvB93/CAT/blob/master/CAT/data/templates/qd.yaml], while False will skip the
thermochemical analysis completely.

Type Aliases

Aliases are available for a large number of job types,
allowing one to pass a str [https://docs.python.org/3/library/stdtypes.html#str] instead of a type [https://docs.python.org/3/library/functions.html#type] object, thus simplifying
the input settings for CAT. Aliases are insensitive towards capitalization
(or lack thereof).

A comprehensive list of plams.Job subclasses and their respective
aliases (i.e. str [https://docs.python.org/3/library/stdtypes.html#str]) is presented below.

Aliases

	ADFJob [https://www.scm.com/doc/plams/interfaces/adf.html#api] = "adf" = "adfjob"

	AMSJob [https://www.scm.com/doc/plams/interfaces/ams.html#amsjob-api] = "ams" = "amsjob"

	UFFJob [https://www.scm.com/doc/plams/interfaces/legacy.html] = "uff" = "uffjob"

	BANDJob [https://www.scm.com/doc/plams/interfaces/legacy.html] = "band" = "bandjob"

	DFTBJob [https://www.scm.com/doc/plams/interfaces/legacy.html] = "dftb" = "dftbjob"

	MOPACJob [https://www.scm.com/doc/plams/interfaces/mopac.html#api] = "mopac" = "mopacjob"

	ReaxFFJob [https://www.scm.com/doc/plams/interfaces/reaxff.html] = "reaxff" = "reaxffjob"

	Cp2kJob [https://www.scm.com/doc/plams/interfaces/cp2k.html] = "cp2k" = "cp2kjob"

	ORCAJob [https://www.scm.com/doc/plams/interfaces/interfaces.html] = "orca" = "orcajob"

	DiracJob [https://www.scm.com/doc/plams/interfaces/dirac.html#api] = "dirac" = "diracjob"

	GamessJob [https://www.scm.com/doc/plams/interfaces/interfaces.html] = "gamess" = "gamessjob"

	DFTBPlusJob [https://www.scm.com/doc/plams/interfaces/dftbplus.html#api] = "dftbplus" = "dftbplusjob"

	CRSJob [https://github.com/nlesc-nano/nano-CAT/blob/master/nanoCAT/crs.py] = "crs" = "cosmo-rs" = "crsjob"

The Database Class

A Class designed for the storing, retrieval and updating of results.

[image: _images/Database.png]
The methods of the Database class can be divided into three categories
accoring to their functionality:

	Opening & closing the database - these methods serve as context managers
for loading and unloading parts of the database from the harddrive.

The context managers can be accessed via the MetaManager.open()
method of Database.csv_lig, Database.csv_qd,
Database.yaml or Database.hdf5, with the option
of passing additional positional or keyword arguments.

>>> import CAT

>>> database = CAT.Database()
>>> with database.csv_lig.open(write=False) as db:
>>> print(repr(db))
DFCollection(df=<pandas.core.frame.DataFrame at 0x7ff8e958ce80>)

>>> with database.yaml.open() as db:
>>> print(type(db))
<class 'scm.plams.core.settings.Settings'>

>>> with database.hdf5.open('r') as db:
>>> print(type(db))
<class 'h5py._hl.files.File'>

	Importing to the database - these methods handle the importing of new data
from python objects to the Database class:

	update_csv()
	update_yaml()
	update_hdf5()
	update_mongodb()

	Exporting from the database - these methods handle the exporting of data
from the Database class to other python objects or remote locations:

	from_csv()
	from_hdf5()

Index

	dirname
	

	csv_lig
	

	csv_qd
	

	hdf5
	

	yaml
	

	mongodb
	

	update_mongodb([database,

 Index

Index

 _
 | A
 | C
 | D
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | Y

_

 	
 	_DFCollection (class in dataCAT.df_collection)

A

 	
 	activation_strain (optional.qd attribute)

 	
 	as_pdb_array() (in module dataCAT.database_functions)

C

 	
 	column (attribute)

 	core (optional attribute)

 	core_atom (optional.qd.dissociate attribute)

 	
 	core_core_dist (optional.qd.dissociate attribute)

 	core_index (optional.qd.dissociate attribute)

 	csv_lig (dataCAT.database.Database attribute)

 	csv_qd (dataCAT.database.Database attribute)

D

 	
 	Database (class in dataCAT.database)

 	database (optional attribute)

 	df (dataCAT.context_managers.OpenLig attribute)

 	(dataCAT.context_managers.OpenQD attribute)

 	(dataCAT.df_collection._DFCollection attribute)

 	dirname (dataCAT.database.Database attribute)

 	(optional.core attribute)

 	(optional.database attribute)

 	(optional.ligand attribute)

 	(optional.qd attribute)

 	
 	dissociate (optional.qd attribute)

 	dummy (optional.core attribute)

F

 	
 	filename (dataCAT.context_managers.MetaManager attribute)

 	(dataCAT.context_managers.OpenLig attribute)

 	(dataCAT.context_managers.OpenQD attribute)

 	(dataCAT.context_managers.OpenYaml attribute)

 	
 	from_csv() (dataCAT.database.Database method)

 	from_hdf5() (dat